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In this work we analyze scale-free networks with different power-law spectraNskd,k−g under a Boolean
dynamic, where the Boolean rule that each node obeys is a function of its connectivityk. This is done by using
only two logical functions(AND andXOR) which are controlled by a parameterq. Using a damage spreading
technique we show that the Hamming distance and the number of 1’s exhibit power-law behavior as a function
of q. The exponents appearing in the power laws depend on the value ofg.
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I. INTRODUCTION

This paper blends two promising concepts of complex
systems: namely, the Boolean networks[1,2] and models
of growing networks[3,4]. The former was introduced by
Kauffman [1,2] in 1969. One important thing about Kauff-
man’s model is that it was very well received not just by the
physical but by the biological community as well. The sim-
plicity and richness of the behaviors of this model created a
huge field of research, with many types of different Boolean
networks[5]. Moreover, this model became a good candidate
to explain biological problems such as cell differentiation,
gene expression, protein interaction, and genetic regulatory
networks[6–8]. A Boolean network is a complex dynamical
system constituted of logical variables connected by logical
functions. The simplest Boolean model has two parameters:
the number of logical variables,N, and the number of inputs
of their Boolean functions,K, whereK varies fromK=1 (the
function has just one input) to K=N (all variables connected
with all the others including itself). The Boolean functions
are chosen randomly in the beginning, and they are kept
during the dynamics. The network updates synchronously,
meaning that all nodes refresh their state at the same time.
This kind of network exhibits an ordered dynamic forK=1
and a chaotic one whenK=N. However, the network self-
organizes, showing an interesting level of order and com-
plexity at K=2, the edge of chaos. In addition to Darwin’s
natural selection and random mutation, Kauffman’s idea is
that self-organization and random dynamic can be respon-
sible for the complexity observed in nature.

The models of growing networks introduced by Barabási
and Albert [3,4] are on the other side. In these works was
proposed a very elegant way of creating a self-organized
scale-free structure. In contrast to most types of networks
previously known, the scale-free ones exhibit a power-law
distribution of connections,Pskd,k−g, where g is the so-
called scale-free exponent[9]. This behavior is similar to
what happens with lengths in fractal structures. The mecha-

nism that makes possible the arising of such a property is the
so-calledpreferential attachment; that is, the probability of
an old node to receive a new link from a new node is pro-
portional to the number of preexistent connections in this
node. The growing nature of these networks allows the study
of a wide type of networks, such as the World Wide Web,
neural, social relations, disease spreading, voting, citations of
scientific papers, movie’s actors interconnections, etc.
[10–21]. The second characteristic of a scale-free network is
thesmall world effect, which means that the shortest distance
between two nodes is of the order of lnsNd, whereN is the
size of the network. In other words, no matter how large the
network could be, any two nodes are connected via a rela-
tively small chain of links. For instance in WWW any docu-
ment can be reached with fewer than 19 mouse clicks. The
third feature of scale-free graphs is the very good tolerance
to random removal of a significant fraction of its nodes con-
jugated with a high vulnerability to directional attacks to the
most connected nodes(hubs).

Although these two branches of research are expanding,
with a huge amount of publications, the combination of both
is just in the beginning, and little is known about the behav-
ior of random networks under scale-free topology.

Since scale-free networks describe more realistically in-
teractions among members of any types of network, the
Boolean dynamic can help to understand how some sort of
dynamics flows inside those groups with that topology. From
the biologic point of view, the introduction of the scale-free
structure can be a decisive step to describe in a qualitative
and quantitative fashion what is observed in genetic net-
works, metabolic pathways, and protein interaction networks
[28]. All these networks have developed from very simple
ones under the pressure of natural selection. They have
evolved by gradual changes(mutations) that, simultaneously,
keep its functionality. Therefore we expect that scale-free
networks are a more realistic description since they are
growing graphs. It is worth mentioning that scale-free net-
works are more robust to random errors than homogeneous
random models. Experimental evidence has been found in
cellular networks of some living beings—for example, the
yeastSaccharomyces cerevisiae[23].

Few papers have been published using Boolean dynamics
in scale-free networks. Fox and Hill used a random dynamics
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in a network with maximum connectivityKmax=30 to simu-
late the regulation of gene expression[22]. Aldana and Clu-
zel analytically demonstrated the existence of a phase tran-
sition for values of the scale-free exponent in the open
interval (2, 2.5) in the random dynamics[24].

In this work we study scale-free networks with a deter-
ministic Boolean dynamics using numerical simulations. We
consider that the dynamics is driven only byAND and XOR

functions. These functions are controlled by an external pa-
rameterq. This simple dynamics allows us to simulate large
networks. We consider the Hamming distanceD [27] and the
number of 1’s,M, for asymptotic times and different values
of q. After averaging for several initial conditions we find
that these quantities vary withq as power laws.

In the following section we define the scale-free networks
and the Boolean dynamics. Section III presents our results
for the numerical simulations, which are then discussed in
Sec. IV. A brief summary is given in Sec. V.

II. NETWORKS AND THE DYNAMICS

The computer simulation was performed in two major
parts. The first part was the growth of the network, which
corresponds to the static part of the simulation since the net-
work is unchangeable during the dynamics. We grew scale-
free networks with minimum connectivitykmin=1 andkmin
=2 by using thegrowing network with redirectionalgorithm
[25]. The minimum connectivity corresponds to the smallest
number of links that a node can have. The two kinds of
network are grown as follows.

(i) kmin=1. A new node is linked to only one old node; we
select an old node with uniform probability, and then the link
with the old node is established with probability 1−r or it is
redirected to the ancestor of the old node with probabilityr.

(ii ) kmin=2. A new node is linked to two old nodes; we
select an old node with uniform probability, and then one
link with the old node is established with probability 1−r or
it is redirected to one of the two ancestors of that node with
probability r. We repeat the same procedure for the other
link.

In both cases, the initial condition consists of three nodes
with cyclic connections. This algorithm creates a scale-free
network with g=r−1+1. For instance, whenr =0.5, the net-
work hasg=3, corresponding to a growth with linear pref-
erential attachment. We use different values ofr for the two
kinds of networks.

The second part of the simulation is the dynamic itself.
Once the network is made ofN nodes connected by links, to
each nodei is assigned a logical variablesistd. The state of
the network at timet is represented by a set of Boolean
variables (s1std ,s2std ,s3std , . . . ,sNstd). At each time step,
the state of a nodei is defined in the following way.

(i) For kmin=2, sist+1d is given by
Fi(si1

std ,si2
std , . . . ,siki

std). In other words, the state of a

node i at t+1 is a function of the states att of all nodes
linked with i—namely, si1

std ,si2
std , . . . ,siki

std, where ki is

the connectivity of theith node.
(ii ) For kmin=1, the state of a node is defined in a different

way, since there are nodes with just one link. Thensist+1d is

given byFi(sistd ,si1
std ,si2

std , . . . ,siki
std). Now, the state of

a nodei at t+1 is a function of the state att of all nodes
linked to it and of its own state as well. In this way we have
always a function with at least two inputs.

Finally we define the functionFissd:

Fi = HAND if ki , q,

XOR otherwise,
J s1d

whereq is a threshold parameter that controls how the logi-
cal functionsAND andXOR spread into the network. TheAND

and XOR logical functions were introduced in order to sim-
plify the model, avoiding the necessity of defining 22k

differ-
ent Boolean relations for each node. It is know from previous
works that theAND function leads to an ordered regime(with
two fixed points, where all variables are 0’s or 1’s) while the
XOR introduces a more chaotic component to the dynamic.
These kinds of functions are necessary to study biologic net-
works since they are the Boolean counterparts of real reac-
tions in cell regulatory system[2,7]. Once in the scale-free
network, we have many nodes poorly connected(small k)
and few nodes highly connected(largek), Eq.(1). We can set
a balance between chaotic and ordered dynamics inside the
network.

An initial stateS=(s1s0d ,s2s0d ,s3s0d , . . . ,sNs0d) is cre-
ated by assigning randomly 0’s and 1’s to all nodes. A copy

S̄=(s1s0d ,s2s0d ,s3s0d , . . . ,sNs0d) of the initial state is also
created, and we introduce a damage by changing the value of
one randomly chosen node. Both the initial state and the
damaged state evolve under the control of Eq.(1). Once the
new state of all nodes is calculated, the entire network is
updated(synchronous update) and the system goes to the
next Monte Carlo time step(MCS). Note that, except for the
random choice of the initial state, the dynamics is determin-
istic. This means that the Boolean functions act with a prob-
ability p=1, and this is another simplification to the dynam-
ics. Random variables are important in order to simulate real
genetic networks under influence of many uncertainties like
biologic variability, experimental noise, and interacting vari-
ables impossible to quantify. However, this simplification al-
lows us to consider large networks without loss of complex-
ity in the dynamical behavior.

III. SIMULATION DATA AND RESULTS

The dynamical behavior is characterized by two quanti-
ties. The first is the average density of 1’s—namely,

Msq,td = lim
N→`
K 1

N
o
i=1

N

sistdL . s2d

The second is the average of the Hamming distance,
which is defined by

Dsq,td = lim
N→`
K 1

N
o
i=1

N

usistd − sistduL . s3d

Here, k¯l is the average for different initial conditions.
An initial condition is given not only by the initial states
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sS ,S̄d but also by one set of links of a grown network with
a specificg.

After a very short transient(less than 30 time steps) these
quantities reach the stationary valuesMsqd and Dsqd, as is
shown in Fig. 1 for a network withN=83104 nodes,kmin
=1, andr =0.5. The stationary values, defined as

Msqd = lim
T→`

1/TE
t

t+T

Msq,t8ddt8,

Dsqd = lim
T→`

1/TE
t

t+T

Dsq,t8ddt8,

were determined by discarding the first 50 time steps and by
making a time average untilt=200 time steps. We can also
see in the figure that the stationary valuesDsqd and Msqd
depend onq. We are interested in this dependence. It is
worth mentioning that a similar behavior is found for net-
works with different values ofr and also for all networks
with kmin=2.

In order to consider the finite-size effects, we grew net-
works with N=13104, N=23104, N=43104, and N=8
3104 for networks withkmin=1 andkmin=2. The sample av-
erages were performed at least with 102 samples(smallq and
large N). For largeq we have used up to 33104 random
initial conditions.

We can see from Fig. 2 thatDsqd and Msqd have the
following asymptotic power-law behaviors:

Msqd , q−m, s4d

Dsqd , q−d. s5d

Moreover, we can also see in the same figure finite-size
effects for largeq by comparing the behavior of the smallest
network sN=13104d with the largest onesN=83104d. In
order to evaluate the exponents, we eliminate the points af-
fected by finite-size effects and coalesce all different sets.

Finally we do a best fit. This is shown in Fig. 3 for the case
defined in Fig. 2. There, the first pointsq=2d was not con-
sidered in the best fit. Note that we have evaluated the expo-
nents by considering approximately 2 orders of magnitude in
theq variable and that the fit is very good. In fact, in all fitted
data, we obtained a correlation coefficient larger than 0.999.

Plots of Dsqd versusq are shown in Fig. 4 for networks
with kmin=1 and different values ofr [(a) r =0.35 and(b) r
=0.80]. Note that the finite-size effects are present forq
<260 for ther =0.8 andN=83104 case. This implies that
finite-size effects appear forq!k*, where k* is the static
cutoff. In fact, when we are evaluating the connectivity dis-
tribution Pskd for this case, we expect that finite-size effects
appear whenk,k* = Nr <83103 [26]. In a numerical simu-
lation of the exponentg for this case, we found that the
finite-size effects appear fork,1000. Therefore, if we want

FIG. 1. Plots ofMsq,td vs t andDsq,td vs t for a network with
N=83104, kmin=1, andr =0.5. FIG. 2. Log-log plots ofMsqd vs q andDsqd vs q for a network

with kmin=1, r =0.5, and differentN.

FIG. 3. Log-log plots ofMsqd vs q andDsqd vs q for a network
defined in Fig. 2. It shows the best fit of the coalesced sets.
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to evaluate the exponents with 3 orders of magnitude, we
must grow networks much larger than the ones we consider
here.

We follow this procedure to calculate all the other expo-
nents. They are displayed in Table I. The table also show the
values of the scaling-free exponent evaluated numericallygn
and the exact valueg=1+r−1. In the numerically evaluation
of gn we considered the same networks used in the dynamics
with 105 samples. We can see that the exponentsm and d
change withr and kmin. It is worth mentioning that the
asymptotic value ofDsqd is independent of the initial amount
of damage. Only the short-time behavior depends on it. In
particular, if the initial damage is larger thanDsqd, Dsq,td
shows a decay to the stationary value.

In Fig. 5 we show the temporal evolution ofDsq,td /q−d,
for the network withkmin=2 and r =0.5. Note that after an
initial transient, all the curves collapse.

IV. DISCUSSION OF RESULTS

In order to discuss the simulation results, we present a
simple approximation for the evaluation of the exponentsm

and d for the casekmin=1, in which we neglect all the cor-
relations between nodes. Note that argument is also valid for
kmin=2. The dynamics defines two sublattices of nodes de-
pending on the connectivityk of each node. The sublatticesa
andb consist of all nodes withk,q andkùq, respectively.
Then the nodes of sublatticeasbd evolve byAND (XOR) op-
erations. We are interested in the steady state, where the
distribution of connectivity is described byPskd,k−g. In this
regime, we consider that a typical nodei of the sublatticea
with connectivityk hassi =0, because theAND operation of
the nodessi, s1, . . . ,sk is 0 if at least one of thesek+1
nodes is zero. On the other hand, a node of the sublatticeb
has a probability 1/2 of being nonzero, because half of all
possible configurations ofsi, s1, . . . ,sk, under theXOR op-
eration, givesi =1. The average density can be written in
terms of the sublattices asMsqd=Masqd+Mbsqd. Since
Masqd<0, we have

Msqd < Mbsqd =
1

2
E

q

`

Pskddk, q−sg−1d, s6d

implying thatm=g−1. To evaluateDsqd we must consider a
lattice and its copy, which have evolved from two different
initial states. Again we have thatDsqd=Dasqd+Dbsqd, where
Djsqd is the contribution of the sublatticejs j =a,bd. So we
need the number of nodes that have different values in the
lattice and its copy for each one of the sublattices. Since the
nodes of the sublatticea have the value 0 in both lattices,
Dasqd<0. Only the nodes of the sublatticeb can be different
from 0. The probability that the same node be 1 at one lattice
and 0 in its copy is 1/4, if we neglect all correlations. There-
fore we can write that

Dsqd < Dbsqd <
1

2
E

q

`

Pskddk, q−sg−1d. s7d

Using the definition of the exponentd, we find thatd=m
=g−1. From Table I, we see that the values of the exponents
are different from the ones predicted by our approximated
evaluation. This suggests that correlations are important in

FIG. 4. Log-log plots ofDsqd vs q for a network withkmin=1
and (a) r =0.35 and(b) r =0.80. The best fits of the coalesced sets,
after the elimination of the points affected by finite size and the
discard of the first point, furnish(a) d=3.98 and(b) d=1.59.

TABLE I. Exponentsm andd for kmin=1 andkmin=2 for differ-
ent values ofr. It is also shown the scaling-free exponent evaluated
numericallygn and the exact oneg.

r

kmin=1 kmin=2

gn gm d m d

0.35 2.25(3) 3.98 (5) 2.77 (1) 4.10 (2) 3.50 3.86

0.5 1.71(1) 2.89 (2) 2.00 (1) 2.80 (3) 2.92 3.00

0.65 1.38(2) 2.15 (5) - - 2.52 2.54

0.8 1.16(3) 1.59 (1) 0.53 (1) 0.70 (1) 2.27 2.25

FIG. 5. Temporal evolution ofDsq,td for different q and N,
wherekmin=2 andr =0.5 (see legend). The y axis was rescaled by
Dsq,td /q−d in order to show the collapse.
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this problem. To obtain a better understanding we studied the
steady-state behavior of the sublattices for networks withN
=104 nodes. The results of the sublatticea are shown in
Table II in percentages of the quantities characterizing the
complete network.

Let us first analyze the case withkmin=1. From Table II,
we note that the sublatticea is irrelevant for the Hamming
distance independently of the value ofr.

On the other hand, the contribution of this sublattice for
the average density is relevant. This contribution forr
=0.35 is larger than the one forr =0.8. This indicates that the
sublatticea is almost irrelevant forr =1. To get a deep in-
sight we analyzedMbsq,kd and Dbsq,kd, respectively, the
average density and the average Hamming distance of nodes
with connectivityk for a fixed parameterq. Note that both
definitions involve only the nodes of sublatticeb. From the
numerical simulations we obtain that the behavior of these
quantities can be described by

Mbsq,kd , Aqk
−a, s8d

Dbsq,kd , Bqk
−b, s9d

with a and b having values approximately equal togn, the
numerical estimate ofg. This implies thata=b=g. There-
fore, the sublattice quantities can be expressed as

Mbsqd =E
q

`

Msq,kddk, Aqq
−sa−1d, s10d

Dbsqd =E
q

`

Dsq,kddk, Bqq
−sb−1d. s11d

In Fig. 6 it is shown the graphMbsq,kd3k for kmin=1, r
=0.5, N=104, andq=5,10,16. Abest fit furnishesa=2.89
=gn and an interceptAq, both independent ofq. Similar re-
sults are obtained for the other values of the parameterr. If
we neglectMa, then we can write thatMsqd,Mb and m
=a−1=g−1. Then, the exponentm should have a value near
g−1. This can be verified in Table I and the difference be-
tweeng−1 andm, which is around 20% forr =0.35 and 7%
for r =0.8, is due mainly to the contribution of the sublattice
a. Since this contribution becomes smaller and the exponent
m approachesg−1 asr →1, we conjecture thatm=g−1=1
when r =1.

Figure 6 displaysDbsq,kd3k. A best fit furnishesb
=2.89<gn independent ofq and an interceptBq that depends
on q. This dependence is due to the correlation between the

nodes of the two sublattices. Similar results are obtained for
different values ofr. SinceDa<0 independently ofr, we
have thatDsqd<Dbsqd,Bqq

b−1, with b−1=g−1. Then the
exponentd should have a value different fromg−1 because
of Bq. This is confirmed in the simulations, with the intercept
presenting a power-law behaviorBq,q−b1. For r =0.5, b1
<1 and we have thatd<g. When r becomes larger, the
straight lines for differentq in a log-log plot become very
close, implying thatb1→0. Moreover, the exponentd ap-
proachesg−1 as r →1. Then, we conjecture thatd=g−1
=1 for r =1.

It is worth mentioning that forr =1, a new node is always
redirected to the ancestor node. It means that we have three
hubs, the initial nodes, with all other nodes connected to
them. In fact we have a largest hub, with 61% of the all
nodes connected to them, a smallest one(11% of connec-
tions), and a third hub with 28% of all links. During the
dynamics, theXOR operation is applied to the hubs andAND

to the nodes with a single link.
The exponentsd and m−0.2 as a function ofr for kmin

=1 are shown in Fig. 7. Note that we included the values
m=d=1 for r =1 in the data. Although we have only five
points, we can do a best fit. We obtain thatd=0.963
−2.836 lnsrd andm−0.2=0.795r−0.908 with correlation coef-
ficients around −0.9995.

Now, let us discuss the casekmin=2. We can see from
Table III that the sublatticea is now relevant. In fact, as long
as r →1, this sublattice is more important than sublatticeb.
Moreover, the nodes with connectivityk=2 are responsible
for the major contribution ofDsqd or Msqd. For example,
when we have thatr =0.8 andq=10, they correspond to 88%
of D and to 83% ofM. The scenario forr =1 is as follows:
sublatticeb has no direct contribution(Db<0 andMb<0)
and only the nodes withk=kmin=2 are responsible forDsqd
Þ0 and MsqdÞ0. Now, we have three hubs, the initial
nodes, with all other nodes connected to them by two links.
The largest hub and the smallest one have, respectively, 52%

TABLE II. Sublattice percent ofMasqd andDasqd for q=5, 10,
and 16 withkmin=1, N=104, and different values ofr.

q/ r

Ma Da

0.35 0.5 0.8 0.35 0.5 0.8

5 7% 6% 4% 0.03% 0.03% 0.01%

10 18% 16% 9% 1% 0.3% 0.01%

16 25% 24% 15% 4% 1.3% 0.3%

FIG. 6. Log-log plots of the sublatticeb quantitiesMbsq,kd vs k
and Dbsq,kd vs k for different q, where kmin=1, r =0.5, and
N=104.
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and 17% of the all nodes connected to them. During the
dynamics, theXOR operation is applied to the hubs andAND

to the other nodes. These arguments imply that the exponents
d andm are not related tog in the same way as the previous
caseskmin=1d.

V. SUMMARY

We have studied a deterministic Boolean dynamics with
two Boolean functions(AND and XOR) controlled by an ex-
ternal parameterq. We have considered two distinct net-
works with minimum connectivity given bykmin=1 and
kmin=2. In the first case, the state of a node at timet+1 is a
function of all connected nodes plus its own value at previ-

ous time t. In the second case, the state of a node att+1
depends only on the states of all connected nodes at timet.
We have grown networks with different scale-free exponents
by changing a parameterr. The finite-size effects were taken
into account by considering networks with different sizes.
We have shown that the density of the Hamming distanceD
and the density of 1’sM as a function ofq have a power-law
tail for asymptotic times.

It seems that the exponentsd and m characterizing the
behaviors ofD and M, respectively, depend onkmin and r;
this means that the exponents depend on the details of the
dynamics.
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