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Scale-free network with Boolean dynamics as a function of connectivity
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In this work we analyze scale-free networks with different power-law spédtka~ k¥ under a Boolean
dynamic, where the Boolean rule that each node obeys is a function of its conndctilditis is done by using
only two logical functiongAND and xoR) which are controlled by a parametgrUsing a damage spreading
technique we show that the Hamming distance and the number of 1’s exhibit power-law behavior as a function
of g. The exponents appearing in the power laws depend on the valye of
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[. INTRODUCTION nism that makes possible the arising of such a property is the
so-calledpreferential attachmenthat is, the probability of
*an old node to receive a new link from a new node is pro-
portional to the number of preexistent connections in this
node. The growing nature of these networks allows the study
of a wide type of networks, such as the World Wide Web,

hvsical but by the biological X I The si neural, social relations, disease spreading, voting, citations of
physical but by the biological community as well. The SIM- gqeniific papers, movie’s actors  interconnections, etc.

plicity and richness of the behaviors of this model created 815 >7 The second characteristic of a scale-free network is

huge field of research, Wi.th many types of different Boo_leanthesmall world effegtwhich means that the shortest distance
networks[5]. Moreover, this model became a good Cand'dateoetween two nodes is of the order of M), whereN is the

to explain biological problems such as cell dlfferentlatlon,Size of the network. In other words, no matter how large the

gene expression, protein interaction, and genetic reQUIatorXet\Nork could be, any two nodes are connected via a rela-

net\;vorks[G—Etiji '? gooflelzan_ neltwor_kt;T a compleif ?jygarr'calaﬂ\]/ely small chain of links. For instance in WWW any docu-
Systém constituted ot logical variables connected by 109IC&, o+ 4 he reached with fewer than 19 mouse clicks. The

functions. The simplest Boolean model has two parameters;.. ) :
the number of logical variables), and the number of inputs Shird feature of scale-free graphs is the very good tolerance

f their Bool functions<. whereK varies fromK =1 (th to random removal of a significant fraction of its nodes con-

oftheir Boolean Tunctionss, wheres varies froms = (the jugated with a high vulnerability to directional attacks to the

function has just one inputo K=N (all variables connected most connected nodebubs

with all the others mclqdmg |tse)l.f_Th¢ Boolean functions Although these two branches of research are expanding,

gre. ch(irs]endrando.mly 1'_?] the tbeg|||2n|n%, tand theyh are kel ith a huge amount of publications, the combination of both
uring the dynamics. The nework updales Syncnronouslyy just in the beginning, and little is known about the behav-

meaning that all nodes refresh their state at the same tlmt]a0

S o . r of random networks under scale-free topology.
This kind of _network exhibits an ordered dynamic #6r1 Since scale-free networks describe more realistically in-
and a chaotic one whelk=N. However, the network self-

. : ) ) teractions among members of any types of network, the
organizes, showing an interesting level of order and comsx 9 y yp

) " o ~~,_'Boolean dynamic can help to understand how some sort of
plexity atK=2, the edge of chaos. In addition to Darwms. dynamics flows inside those groups with that topology. From

?hattjral Ifselecthn ?nd rar:jdom dmutactilon, Kauffmags idea. isq biologic point of view, the introduction of the scale-free
at sefi-organization and random dynamic can De reSpofg .+ ,re can be a decisive step to describe in a qualitative

sible for the complexity observed in nature. and quantitative fashion what is observed in genetic net-

The models of growing networks introduced by BarabéskN ; g .
) orks, metabolic pathways, and protein interaction networks
and Albert[3,4] are on the other side. In these works was 8. All these nei)works ¥1ave d(fveloped from very simple

proposed a very elegant way of creating a self-organize nes under the pressure of natural selection. They have

scale-free structure. In contrast to most types of network%volved by gradual changesiutations that, simultaneously,
g.r;\r'.'gu?gn kgfoivgr']ntgst.éﬁzﬁ('lgiekf)?eshee);r;'b't.sa tﬁgwseor_-lavxkeep its functionality. Therefore we expect that scale-free
'” IdUI lo-f ' Thi b wi ey IS | networks are a more realistic description since they are
called scale-free expone®]. This behavior is similar to o0 ing graphs. It is worth mentioning that scale-free net-
what happens with lengths in fractal structures. The mechq,—vOrks are more robust to random errors than homogeneous
random models. Experimental evidence has been found in
cellular networks of some living beings—for example, the

This paper blends two promising concepts of comple
systems: namely, the Boolean netwofls2] and models
of growing networks[3,4]. The former was introduced by
Kauffman[1,2] in 1969. One important thing about Kauff-
man’s model is that it was very well received not just by the

*Electronic address: alcides@fisica.ufmg.br yeastSaccharomyces cerevisif23].
"Electronic address: jaff@fisica.ufmg.br Few papers have been published using Boolean dynamics
*Electronic address: jfmendes@fis.ua.pt in scale-free networks. Fox and Hill used a random dynamics
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in a network with maximum connectiviti{y,=30 to simu-  given by Fi(o;(), 03, (),07,(1), ... .0y (1)). Now, the state of
late the regulation of gene expressi@2]. Aldana and Clu- 4 nodeij at t+1 is a function of the state atof all nodes

zel analytically demonstrated the existence of a phase traffnked to it and of its own state as well. In this way we have
sition for values of the scale-free exponent in the openyways a function with at least two inputs.

interval (2, 2.9 in the random dynamicg24]. Finally we define the functiof;(o):
In this work we study scale-free networks with a deter-
ministic Boolean dynamics using numerical simulations. We _JAnD if ki <q,
consider that the dynamics is driven only Byb and XoR " | xor otherwise, (1)

functions. These functions are controlled by an external pa-

rameterq. This simple dynamics allows us to simulate largewhereq is a threshold parameter that controls how the logi-

networks. We consider the Hamming distafité27] and the ~ cal functionsanD andXoRr spread into the network. Thenp

number of 1'sM, for asymptotic times and different values and xoR logical functions were introduced in ordker to sim-

of g. After averaging for several initial conditions we find plify the model, avoiding the necessity of defining Biffer-

that these quantities vary witihas power laws. ent Boolean relations for each node. It is know from previous
In the following section we define the scale-free networksworks that theaND function leads to an ordered regirwith

and the Boolean dynamics. Section Ill presents our resultavo fixed points, where all variables are 0’s or)lighile the

for the numerical simulations, which are then discussed irxor introduces a more chaotic component to the dynamic.

Sec. IV. A brief summary is given in Sec. V. These kinds of functions are necessary to study biologic net-
works since they are the Boolean counterparts of real reac-
[l. NETWORKS AND THE DYNAMICS tions in cell regulatory systerj2,7]. Once in the scale-free

network, we have many nodes poorly connecteahall k)
and few nodes highly connectédrgek), Eq.(1). We can set

parts. The first part was the growth .Of the_netvyork, which balance between chaotic and ordered dynamics inside the
corresponds to the static part of the simulation since the ne Setwork

work is unchangeable during the dynamics. We grew scale- An initial states = (0(0), 75(0), 5(0), ... ,on(0)) is cre-

free networks with minimum connectivity,,;,=1 andKq, L , ;
=2 by using thegrowing network with redirectiomlgorithm ated by assigning randomly 0's and 1's to all nodes. A copy

[25]. The minimum connectivity corresponds to the smallest =(21(0),02(0),5(0), ... ,on(0)) of the initial state is also
number of links that a node can have. The two kinds ofcreated, and we introduce a damage by changing the value of
network are grown as follows. one randomly chosen node. Both the initial state and the
(i) kyin=1. A new node is linked to only one old node; we damaged state evolve under the control of Elq.: Once the '
select an old node with uniform probability, and then the linknew state of all nodes is calculated, the entire network is
with the old node is established with probability d er itis ~ Updated(synchronous updateand the system goes to the
redirected to the ancestor of the old node with probability next Monte Carlo time ste(MCS). Note that, except for the
(i) kKpn=2. A new node is linked to two old nodes; we random choice of the initial state, the dynamics is determin-
select an old node with uniform probability, and then oneistic. This means that the Boolean functions act with a prob-
link with the old node is established with probability er ~ ability p=1, and this is another simplification to the dynam-
it is redirected to one of the two ancestors of that node witHcs- Random variables are important in order to simulate real
probability r. We repeat the same procedure for the othefdenetic networks under influence of many uncertainties like
link. biologic variability, experimental noise, and interacting vari-
In both cases, the initial condition consists of three nodegbles impossible to quantify. However, this simplification al-
with cyclic connections. This algorithm creates a scale-fredOWS US to consider large networks without loss of complex-
network with y=r~+1. For instance, when=0.5, the net- ity in the dynamical behavior.
work hasy=3, corresponding to a growth with linear pref-
e.rential attachment. We use different values &r the two IIl. SIMULATION DATA AND RESULTS
kinds of networks.
The second part of the simulation is the dynamic itself. The dynamical behavior is characterized by two quanti-
Once the network is made &f nodes connected by links, to ties. The first is the average density of 1's—namely,

The computer simulation was performed in two major

each node is assigned a logical variablg(t). The state of LN
the network at timet is represented by a set of Boolean M(a.t) = lim{ = (t 2
variables (o4(1), o5(t),, o3(t), ... ,on(t)). At each time step, @y NLw ,;l ai(®) /. 2

the state of a nodeis defined in the following way. ) i )
(i) For kpy,=2, oit+1l) is given by The second is the average of the Hamming distance,

Fi(o1,(1),01(1), ...,03 (1). In other words, the state of a which is defined by

nodei att+1 is a function of the states atof all nodes _ 1 -
linked with i—namely, o; (1), 0;(1), ... 0 (), wherelk; is D(q,1) :|\|1|m NE loi(t) = ay(1)] ). (3
i o\ Ni=1

the connectivity of thaéth node.
(i) Fork,i,=1, the state of a node is defined in a different Here,{---) is the average for different initial conditions.
way, since there are nodes with just one link. Thgi+1) is  An initial condition is given not only by the initial states
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FIG. 1. Plots ofM(q,t) vst andD(q,t) vst for a network with
N=8x 10% k=1, andr=0.5. FIG. 2. Log-log plots oM(q) vs g andD(q) vs g for a network

with kpnin=1, r=0.5, and differeniN.

(%,3) but also by one set of links of a grown network With a1y we do a best fit. This is shown in Fig. 3 for the case

a specificy. _ _ defined in Fig. 2. There, the first poifg=2) was not con-
After a very short transienitess than 30 time stepthese  gigereq in the best fit. Note that we have evaluated the expo-

quantities reach the stationary valudq) andD(q), as s ans by considering approximately 2 orders of magnitude in

shown in Fig. 1 for a network wittN=810* nodesknin  theq variable and that the fit is very good. In fact, in all fitted

=1, andr=0.5. The stationary values, defined as data, we obtained a correlation coefficient larger than 0.999.
t+T Plots of D(qg) versusqg are shown in Fig. 4 for networks
M(q) = lim /T M(q,t")dt’, with knin=1 and different values af [(a) r=0.35 and(b) r
T—o t

=0.80. Note that the finite-size effects are present ¢pr
~ 260 for ther=0.8 andN=8x 10" case. This implies that
, - finite-size effects appear fay<<k*, where k* is the static
D(a) :Tlflln- D(q,t")dt’, cutoff. In fact, when we are evaluating the connectivity dis-
! tribution P(k) for this case, we expect that finite-size effects
were determined by discarding the first 50 time steps and bgppear whek~k* = N'~8x 10° [26]. In a numerical simu-
making a time average untiF200 time steps. We can also lation of the exponenty for this case, we found that the
see in the figure that the stationary value&y) and M(q)  finite-size effects appear fér~ 1000. Therefore, if we want
depend ong. We are interested in this dependence. It is
worth mentioning that a similar behavior is found for net-  1o"
works with different values of and also for all networks
with Kqyin=2.
In order to consider the finite-size effects, we grew net-
works with N=1x10*, N=2x10% N=4x10% and N=8
X 10* for networks withk,=1 andk.,;,=2. The sample av- 10° ¢ best fit (m=1.71)
erages were performed at least witlf $@mplegsmallq and Ocolasced sets
large N). For largeq we have used up to:810* random 10° ‘
initial conditions. 10t 1 10 100
We can see from Fig. 2 thdd(q) and M(q) have the
following asymptotic power-law behaviors: -

M(a) ~qg™, (4)

t+T

M(a)

107 ¢

D(a)

D(g) ~ g™ (5) | [— pestift @=289) |

Moreover, we can also see in the same figure finite-size 10®
effects for largeg by comparing the behavior of the smallest
network (N=1x 10% with the largest ongN=8x 10%. In
order to evaluate the exponents, we eliminate the points af- FIG. 3. Log-log plots oMM(q) vs g andD(q) vs q for a network
fected by finite-size effects and coalesce all different setsdefined in Fig. 2. It shows the best fit of the coalesced sets.

1 10 100
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10° ‘ . FIG. 5. Temporal evolution oD(q,t) for different g and N,
1 10 100 1000 wherek,,=2 andr=0.5 (see legend They axis was rescaled by
q D(q,t)/q % in order to show the collapse.

FIG. 4. Log-log plots ofD(q) vs q for a network withkyi,=1
and(a) r=0.35 and(b) r=0.80. The best fits of the coalesced sets,andd for the casekyj,=1, in which we neglect all the cor-
after the elimination of the points affected by finite size and therelations between nodes. Note that argument is also valid for
discard of the first point, furniste) d=3.98 and(b) d=1.59. Kmin=2. The dynamics defines two sublattices of nodes de-
pending on the connectivity of each node. The sublatticas

to evaluate the exponents with 3 orders of magnitude, w@&ndb consist of all nodes witlk<q andk=g, respectively.
must grow networks much larger than the ones we considefhen the nodes of sublattiab) evolve byAND (XOR) op-
here. erations. We are interested in the steady state, where the
We follow this procedure to calculate all the other expo-distribution of connectivity is described (k) ~ k™. In this
nents. They are displayed in Table I. The table also show theegime, we consider that a typical nodef the sublatticea
values of the scaling-free exponent evaluated numerigglly With connectivityk haso;=0, because thenp operation of
and the exact valug=1+r"1. In the numerically evaluation the nodesa;, a1,...,0 is 0 if at least one of thesk+1
of y, we considered the same networks used in the dynamidgodes is zero. On the other hand, a node of the sublditice
with 10° samples. We can see that the exponentandd  has a probability 1/2 of being nonzero, because half of all
change withr and k. It is worth mentioning that the Possible configurations af;, oy, ... 0y, under thexor op-
asymptotic value ob(q) is independent of the initial amount eration, giveo;=1. The average density can be written in
of damage. Only the short-time behavior depends on it. Iferms of the sublattices ad(q)=M,(q)+My(q). Since
particular, if the initial damage is larger thaq), D(gq,t)  Ma(@~0, we have
shows a decay to the stationary value. 1(*
In Fig. 5 we shgw the temporal evolution Bf(g,t)/q¢, M(q) = My(q) = _J P(k)dk~ g 9, (6)
for the network withk,;,=2 andr=0.5. Note that after an 2)4

initial transient, all the curves collapse. . . .
P implying thatm=+y-1. To evaluatdd(q) we must consider a

lattice and its copy, which have evolved from two different
initial states. Again we have th8x(q) =D,(q) +Dy(q), where
In order to discuss the simulation results, we present @;(q) is the contribution of the sublatticgj=a,b). So we
simple approximation for the evaluation of the exponents need the number of nodes that have different values in the
lattice and its copy for each one of the sublattices. Since the
TABLE |. Exponentsm andd for kn,,=1 andkq;,=2 for differ-  nodes of the sublattica have the value 0 in both lattices,
ent values of . It is also shown the scaling-free exponent evaluatedD,(q) = 0. Only the nodes of the sublattibecan be different

IV. DISCUSSION OF RESULTS

numerically y, and the exact ong. from 0. The probability that the same node be 1 at one lattice
and 0 in its copy is 1/4, if we neglect all correlations. There-
Kmin=1 Kmin=2 fore we can write that
‘ m d m d (" -
T Y D(q) = Dy(q) = 5 P(k)dk~ g™, (7)

0.35 225@3) 3.98(5) 2.77(1) 4.10(2) 350 3.86 d

05 1.71(1) 2.89(2 2.00(1) 2.80(3) 292 3.00 Using the definition of the exponemnt, we find thatd=m

0.65 1.382) 2.15(5) - - 252 254 =vy-1. From Table I, we see that the values of the exponents
08 1.16(3) 159(1) 0531 070(1) 227 225 are different from the ones predicted by our approximated
evaluation. This suggests that correlations are important in

066140-4



SCALE-FREE NETWORK WITH BOOLEAN DYNAMICS AS... PHYSICAL REVIEW E 70, 066140(2004)

TABLE II. Sublattice percent oM4(q) andD4(q) for q=5, 10, 10°
and 16 withky,i,=1, N=10% and different values of.
10° 5
Ma Da S 10° L oamto ]
s Og=16
qlr 0.35 0.5 0.8 0.35 0.5 0.8 10° L ]
5 7% 6% 4% 0.03% 0.03% 0.01% . . ‘
10 18% 16% 9% 1% 0.3% 0.01% 11002 1 10 . 100 1000
16 25% 24% 15% 4% 1.3% 0.3% o'
=z 10 F
this problem. To obtain a better understanding we studied theg o'
steady-state behavior of the sublattices for networks With
=10* nodes. The results of the sublattieeare shown in 10° ¢
Table Il in percentages of the quantities characterizing the 42 .
complete network. 1 10 100

Let us first analyze the case wikl,,=1. From Table II,
we note that the sublattice is irrelevant for the Hamming FIG. 6. Log-log plots of the sublattide quantitiesMy(q, k) vs k
distance independently of the value rof and Dy(q,k) vs k for different g, where ky,,=1, r=0.5, and

On the other hand, the contribution of this sublattice forn=10%
the average density is relevant. This contribution for
=0.35 is larger than the one for0.8. This indicates that the nodes of the two sublattices. Similar results are obtained for
sublatticea is almost irrelevant for=1. To get a deep in- different values ofr. Since D,~0 independently of, we
sight we analyzedM,(q,k) and Dy(q,k), respectively, the have thatD(q) =~Dy(q) ~B,g?™*, with B=1=y-1. Then the
average density and the average Hamming distance of nodegponentd should have a value different from-1 because

with connectivityk for a fixed parameteqg. Note that both
definitions involve only the nodes of sublattibe From the

of By. This is confirmed in the simulations, with the intercept
presenting a power-law behavitB'q~q‘ﬁ1. Forr=0.5, 8,

numerical simulations we obtain that the behavior of these=1 and we have thati=y. Whenr becomes larger, the

quantities can be described by
Mp(g,K) ~ AgK™, (8

Dp(q,K) ~ Bgk™”, 9

with @ and 8 having values approximately equal 4q, the
numerical estimate of. This implies thate=8=1v. There-
fore, the sublattice quantities can be expressed as

Mp(q) = f M(q,k)dk ~ Agg~@~Y, (10)
q

Dp(q) = f ) D(q,k)dk ~ Bqg™ AP, (11)
q

In Fig. 6 it is shown the grapMy(q,k) Xk for kpnin=1, r
=0.5,N=10% andq=5,10, 16. Abest fit furnishesx=2.89
=7, and an interceph,, both independent af. Similar re-

sults are obtained for the other values of the paramettr
we neglectM,, then we can write thaM(q)~M, and m

straight lines for differeng in a log-log plot become very
close, implying that3; — 0. Moreover, the exponent ap-
proachesy—1 asr—1. Then, we conjecture that=y-1
=1 forr=1.

It is worth mentioning that for=1, a new node is always
redirected to the ancestor node. It means that we have three
hubs, the initial nodes, with all other nodes connected to
them. In fact we have a largest hub, with 61% of the all
nodes connected to them, a smallest ¢h&% of connec-
tions), and a third hub with 28% of all links. During the
dynamics, thexor operation is applied to the hubs ansd
to the nodes with a single link.

The exponentsl and m-0.2 as a function of for Ky,
=1 are shown in Fig. 7. Note that we included the values
m=d=1 for r=1 in the data. Although we have only five
points, we can do a best fit. We obtain thdt0.963
-2.836I(r) andm-0.2=0.795"°9 with correlation coef-
ficients around —0.9995.

Now, let us discuss the cadg,,=2. We can see from
Table Il that the sublattica is now relevant. In fact, as long

=a-1=y-1. Then, the exponem should have a value near asr— 1, this sublattice is more important than sublattice
y—1. This can be verified in Table | and the difference be-Moreover, the nodes with connectivikz=2 are responsible

tweeny—1 andm, which is around 20% for=0.35 and 7%

for the major contribution oD(q) or M(qg). For example,

for r=0.8, is due mainly to the contribution of the sublattice when we have that=0.8 andg=10, they correspond to 88%
a. Since this contribution becomes smaller and the exponertf D and to 83% ofM. The scenario for=1 is as follows:

m approacheg-1 asr — 1, we conjecture thah=y-1=1
whenr=1.
Figure 6 displaysDy(q,k) X k. A best fit furnishesg

sublatticeb has no direct contributioiD,~0 and M,=0)
and only the nodes with=k,,,;,=2 are responsible fdp(q)
#0 and M(g) #0. Now, we have three hubs, the initial

=2.89~= v, independent of| and an intercefB, that depends nodes, with all other nodes connected to them by two links.
on g. This dependence is due to the correlation between th&he largest hub and the smallest one have, respectively, 52%
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6.0 | T | T . TABLE Ill. Sublattice percent oM 4(q) andD4(q) for g=10 and
20 or 25 withkpn=2, N=10" and different values of.
50 | Od .
Om-0.2 M, D,
— bestfitofd
40+ -=--=- bestfitof m-0.2 | |

alr 0.35 0.5 0.8 0.35 0.5 0.8

10 24% 43% 84% 32% 53% 89%

Exponents d and (m-0.2)
W
o

20 17% 43% - 22% 53% -
25 - - 92% - - 95%
20 .
10 b i ous timet. In the second case, the state of a nodé+dlt
depends only on the states of all connected nodes atttime
We have grown networks with different scale-free exponents
0.0 1 1 1 1 1 H H H - H
0.0 02 oa 06 o8 10 by changing a parameter The finite-size effects were taken

r into account by considering networks with different sizes.
We have shown that the density of the Hamming distedce
FIG. 7. Exponentsd and m-0.2 as a function ofr for  and the density of 1’8 as a function ofj have a power-law
Kmin=1. tail for asymptotic times.

It seems that the exponentsand m characterizing the
and 17% of the all nodes connected to them. During thdehaviors ofD and M, respectively, depend ki, andr;
dynamics, thexor operation is applied to the hubs aasp  this means that the exponents depend on the details of the
to the other nodes. These arguments imply that the exponen&namics.

d andm are not related tg in the same way as the previous
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